Weak solutions for the p-Laplacian with a nonlinear boundary condition at resonance
We study the existence of weak solutions to the equation Δpu = |u|p-2u + f(x, u) with the nonlinear boundary condition |∇u|p-2∂u/∂v = λ|u|p-2u - h(x, u). We assume Landesman-Lazer type conditions and use variational arguments to prove the existence of solutions.
Guardado en:
Autores principales: | Martínez, S., Rossi, J.D. |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2003
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10726691_v2003_n_p1_Martinez https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10726691_v2003_n_p1_Martinez_oai |
Aporte de: |
Ejemplares similares
-
Weak solutions for the p-Laplacian with a nonlinear boundary condition at resonance
por: Martínez, S., et al.
Publicado: (2003) -
Weak solutions for the p-Laplacian with a nonlinear boundary condition at resonance
por: Martínez, S., et al. -
Weak solutions for the p-Laplacian with a nonlinear boundary condition at resonance
por: Martínez, Sandra Rita, et al.
Publicado: (2003) -
On the Fučik spectrum and a resonance problem for the p-Laplacian with a nonlinear boundary condition
por: Martinez, S.R., et al. -
Existence results for the p-Laplacian with nonlinear boundary conditions
por: Bonder, J.F., et al.
Publicado: (2001)