Weak solutions for the p-Laplacian with a nonlinear boundary condition at resonance
We study the existence of weak solutions to the equation Δpu = |u|p-2u + f(x, u) with the nonlinear boundary condition |∇u|p-2∂u/∂v = λ|u|p-2u - h(x, u). We assume Landesman-Lazer type conditions and use variational arguments to prove the existence of solutions.
Guardado en:
Autores principales: | , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2003
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10726691_v2003_n_p1_Martinez https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10726691_v2003_n_p1_Martinez_oai |
Aporte de: |
Sumario: | We study the existence of weak solutions to the equation Δpu = |u|p-2u + f(x, u) with the nonlinear boundary condition |∇u|p-2∂u/∂v = λ|u|p-2u - h(x, u). We assume Landesman-Lazer type conditions and use variational arguments to prove the existence of solutions. |
---|