Multiple clues for license plate detection and recognition

This paper addresses a license plate detection and recognition (LPR) task on still images of trucks. The main contribution of our LPR system is the fusion of different segmentation algorithms used to improve the license plate detection. We also compare the performance of two kinds of classifiers for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Negri, P., Tepper, M., Acevedo, D., Jacobo, J., Mejail, M.
Formato: Artículo publishedVersion
Publicado: 2010
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_03029743_v6419LNCS_n_p269_Negri
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_03029743_v6419LNCS_n_p269_Negri_oai
Aporte de:
Descripción
Sumario:This paper addresses a license plate detection and recognition (LPR) task on still images of trucks. The main contribution of our LPR system is the fusion of different segmentation algorithms used to improve the license plate detection. We also compare the performance of two kinds of classifiers for optical character recognition (OCR): one based on the a contrario framework using the shape contexts as features and the other based on a SVM classifier using the intensity pixel values as features. © 2010 Springer-Verlag.