The clique operator on circular-arc graphs

A circular-arc graphG is the intersection graph of a collection of arcs on the circle and such a collection is called a model of G. Say that the model is proper when no arc of the collection contains another one, it is Helly when the arcs satisfy the Helly Property, while the model is proper Helly w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.
Formato: Artículo publishedVersion
Publicado: 2010
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0166218X_v158_n12_p1259_Lin
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0166218X_v158_n12_p1259_Lin_oai
Aporte de:
Descripción
Sumario:A circular-arc graphG is the intersection graph of a collection of arcs on the circle and such a collection is called a model of G. Say that the model is proper when no arc of the collection contains another one, it is Helly when the arcs satisfy the Helly Property, while the model is proper Helly when it is simultaneously proper and Helly. A graph admitting a Helly (resp. proper Helly) model is called a Helly (resp. proper Helly) circular-arc graph. The clique graphK (G) of a graph G is the intersection graph of its cliques. The iterated clique graphKi (G) of G is defined by K0 (G) = G and Ki + 1 (G) = K (Ki (G)). In this paper, we consider two problems on clique graphs of circular-arc graphs. The first is to characterize clique graphs of Helly circular-arc graphs and proper Helly circular-arc graphs. The second is to characterize the graph to which a general circular-arc graph K-converges, if it is K-convergent. We propose complete solutions to both problems, extending the partial results known so far. The methods lead to linear time recognition algorithms, for both problems. © 2009 Elsevier B.V. All rights reserved.