A nonlocal p-Laplacian evolution equation with Neumann boundary conditions

In this paper we study the nonlocal p-Laplacian type diffusion equation,ut (t, x) = under(∫, Ω) J (x - y) | u (t, y) - u (t, x) |p - 2 (u (t, y) - u (t, x)) d y . If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian evolution equation ut = div (| ∇ u |p - 2 ∇ u...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J.
Formato: Artículo publishedVersion
Publicado: 2008
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00217824_v90_n2_p201_Andreu
http://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00217824_v90_n2_p201_Andreu_oai
Aporte de:
Descripción
Sumario:In this paper we study the nonlocal p-Laplacian type diffusion equation,ut (t, x) = under(∫, Ω) J (x - y) | u (t, y) - u (t, x) |p - 2 (u (t, y) - u (t, x)) d y . If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian evolution equation ut = div (| ∇ u |p - 2 ∇ u) with homogeneous Neumann boundary conditions. We prove existence and uniqueness of a strong solution, and if the kernel J is rescaled in an appropriate way, we show that the solutions to the corresponding nonlocal problems converge strongly in L∞ (0, T ; Lp (Ω)) to the solution of the p-Laplacian with homogeneous Neumann boundary conditions. The extreme case p = 1, that is, the nonlocal analogous to the total variation flow, is also analyzed. Finally, we study the asymptotic behavior of the solutions as t goes to infinity, showing the convergence to the mean value of the initial condition. © 2008 Elsevier Masson SAS. All rights reserved.