Density estimation using bootstrap quantile variance and quantile-mean covariance

We propose two novel bootstrap density estimators based on the quantile variance and the quantile-mean covariance. We review previous developments on quantile-density estimation and asymptotic results in the literature that can be applied to this case. We conduct Monte Carlo simulations for dierent...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Montes Rojas, Gabriel, Mena, Andrés Sebastián
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: Instituto Interdisciplinario de Economía Política (IIEP UBA-CONICET) 2022
Materias:
Acceso en línea:https://ojs.economicas.uba.ar/DT-IIEP/article/view/2449
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=dociiep&d=2449_oai
Aporte de:
Descripción
Sumario:We propose two novel bootstrap density estimators based on the quantile variance and the quantile-mean covariance. We review previous developments on quantile-density estimation and asymptotic results in the literature that can be applied to this case. We conduct Monte Carlo simulations for dierent data generating processes, sample sizes, and parameters. The estimators perform well in comparison to benchmark nonparametric kernel density estimator. Some of the explored smoothing techniques present lower bias and mean integrated squared errors, which indicates that the proposed estimator is a promising strategy.