Anticausal Learning for Inverse Problems and its Application on Optoacoustic Tomography

Artificial intelligence algorithms commonly exhibit poor performance when deployed on data whose distribution deviates from the one utilized during the training phase. While this vulnerability can be addressed post-training, doing so may necessitate a computationally intensive fine-tuning process an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vera, Matías, González, Martín Germán, Rey Vega, Leonardo
Formato: Artículo publishedVersion
Lenguaje:Español
Publicado: FIUBA 2025
Materias:
Acceso en línea:https://elektron.fi.uba.ar/elektron/article/view/222
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=elektron&d=222_oai
Aporte de:

Ejemplares similares