Deep Recurrent Learning for Heart Sounds Segmentation based on Instantaneous Frequency Features
In this work, a novel stack of well-known technologies is presented to determine an automatic method to segment the heart sounds in a phonocardiogram (PCG). We will show a deep recurrent neural network (DRNN) capable of segmenting a PCG into their main components and a very specific way of extractin...
Guardado en:
| Autores principales: | Gaona, Alvaro Joaquin, Arini, Pedro David |
|---|---|
| Formato: | Artículo publishedVersion |
| Lenguaje: | Inglés |
| Publicado: |
FIUBA
2020
|
| Materias: | |
| Acceso en línea: | https://elektron.fi.uba.ar/elektron/article/view/101 https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=elektron&d=101_oai |
| Aporte de: |
Ejemplares similares
-
The behavioral tagging hypothesis and its implications for long-term memory formation
por: Moncada, D., et al. -
The behavioral tagging hypothesis and its implications for long-term memory formation
por: Moncada, Diego, et al.
Publicado: (2015) -
Enhancement of long-term memory expression by a single trial during consolidation
por: Smal, L., et al. -
Enhancement of long-term memory expression by a single trial during consolidation
por: Suarez, Luis Daniel, et al.
Publicado: (2011) -
Working memory : the connected intelligence /
Publicado: (2013)