Deep Recurrent Learning for Heart Sounds Segmentation based on Instantaneous Frequency Features
In this work, a novel stack of well-known technologies is presented to determine an automatic method to segment the heart sounds in a phonocardiogram (PCG). We will show a deep recurrent neural network (DRNN) capable of segmenting a PCG into their main components and a very specific way of extractin...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Artículo publishedVersion |
| Lenguaje: | Inglés |
| Publicado: |
FIUBA
2020
|
| Materias: | |
| Acceso en línea: | https://elektron.fi.uba.ar/elektron/article/view/101 https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=elektron&d=101_oai |
| Aporte de: |
| id |
I28-R145-101_oai |
|---|---|
| record_format |
dspace |
| spelling |
I28-R145-101_oai2026-02-11 Gaona, Alvaro Joaquin Arini, Pedro David 2020-12-14 In this work, a novel stack of well-known technologies is presented to determine an automatic method to segment the heart sounds in a phonocardiogram (PCG). We will show a deep recurrent neural network (DRNN) capable of segmenting a PCG into their main components and a very specific way of extracting instantaneous frequency that will play an important role in the training and testing of the proposed model. More specifically, it involves an Long Short-Term Memory (LSTM) neural network accompanied by the Fourier Synchrosqueezed Transform (FSST) used to extract instantaneous time-frequency features from a PCG. The present approach was tested on heart sound signals longer than 5 seconds and shorter than 35 seconds from freely-available databases. This approach proved that, with a relatively small architecture, a small set of data and the right features, this method achieved an almost state-of-the-art performance, showing an average sensitivity of 89.5%, an average positive predictive value of 89.3% and an average accuracy of 91.3%. En este trabajo se presenta un conjunto de técnicas bien conocidas definiendo un método automático para determinar los sonidos fundamentales en un fonocardiograma (PCG). Mostraremos una red neuronal recurrente capaz de segmentar segmentar un fonocardiograma en sus principales componentes, y una forma muy específica de extraer frecuencias instantáneas que jugarán un importante rol en el entrenamiento y validación del modelo propuesto. Más específicamente, el método propuesto involucra una red neuronal Long Short-Term Memory (LSTM) acompañada de la Transformada Sincronizada de Fourier (FSST) usada para extraer atributos en tiempo-frecuencia en un PCG. El presente enfoque fue evaluado con señales de fonocardiogramas mayores a 5 segundos y menores a 35 segundos de duración extraı́dos de bases de datos públicas. Se demostró, que con una arquitectura relativamente pequeña, un conjunto de datos acotado y una buena elección de las características, este método alcanza una eficacia cercana a la del estado del arte, con una sensitividad promedio de 89.5%, una precisión promedio de 89.3% y una exactitud promedio de 91.3%. application/pdf text/html https://elektron.fi.uba.ar/elektron/article/view/101 10.37537/rev.elektron.4.2.101.2020 eng FIUBA https://elektron.fi.uba.ar/elektron/article/view/101/198 https://elektron.fi.uba.ar/elektron/article/view/101/212 Derechos de autor 2020 Alvaro Joaquin Gaona, Pedro David Arini Elektron Journal; Vol. 4 No. 2 (2020); 52-57 Revista Elektron; Vol. 4 Núm. 2 (2020); 52-57 Revista Elektron; v. 4 n. 2 (2020); 52-57 2525-0159 2525-0159 phonocardiogram fourier transform long short-term memory fonocardiograma transformada sincronizada de fourier long short-term memory Deep Recurrent Learning for Heart Sounds Segmentation based on Instantaneous Frequency Features Aprendizaje profundo y recurrente para la segmentación de sonidos cardíacos basado en características de frecuencia instantánea info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=elektron&d=101_oai |
| institution |
Universidad de Buenos Aires |
| institution_str |
I-28 |
| repository_str |
R-145 |
| collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
| language |
Inglés |
| orig_language_str_mv |
eng |
| topic |
phonocardiogram fourier transform long short-term memory fonocardiograma transformada sincronizada de fourier long short-term memory |
| spellingShingle |
phonocardiogram fourier transform long short-term memory fonocardiograma transformada sincronizada de fourier long short-term memory Gaona, Alvaro Joaquin Arini, Pedro David Deep Recurrent Learning for Heart Sounds Segmentation based on Instantaneous Frequency Features |
| topic_facet |
phonocardiogram fourier transform long short-term memory fonocardiograma transformada sincronizada de fourier long short-term memory |
| description |
In this work, a novel stack of well-known technologies is presented to determine an automatic method to segment the heart sounds in a phonocardiogram (PCG). We will show a deep recurrent neural network (DRNN) capable of segmenting a PCG into their main components and a very specific way of extracting instantaneous frequency that will play an important role in the training and testing of the proposed model. More specifically, it involves an Long Short-Term Memory (LSTM) neural network accompanied by the Fourier Synchrosqueezed Transform (FSST) used to extract instantaneous time-frequency features from a PCG. The present approach was tested on heart sound signals longer than 5 seconds and shorter than 35 seconds from freely-available databases. This approach proved that, with a relatively small architecture, a small set of data and the right features, this method achieved an almost state-of-the-art performance, showing an average sensitivity of 89.5%, an average positive predictive value of 89.3% and an average accuracy of 91.3%. |
| format |
Artículo publishedVersion |
| author |
Gaona, Alvaro Joaquin Arini, Pedro David |
| author_facet |
Gaona, Alvaro Joaquin Arini, Pedro David |
| author_sort |
Gaona, Alvaro Joaquin |
| title |
Deep Recurrent Learning for Heart Sounds Segmentation based on Instantaneous Frequency Features |
| title_short |
Deep Recurrent Learning for Heart Sounds Segmentation based on Instantaneous Frequency Features |
| title_full |
Deep Recurrent Learning for Heart Sounds Segmentation based on Instantaneous Frequency Features |
| title_fullStr |
Deep Recurrent Learning for Heart Sounds Segmentation based on Instantaneous Frequency Features |
| title_full_unstemmed |
Deep Recurrent Learning for Heart Sounds Segmentation based on Instantaneous Frequency Features |
| title_sort |
deep recurrent learning for heart sounds segmentation based on instantaneous frequency features |
| publisher |
FIUBA |
| publishDate |
2020 |
| url |
https://elektron.fi.uba.ar/elektron/article/view/101 https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=elektron&d=101_oai |
| work_keys_str_mv |
AT gaonaalvarojoaquin deeprecurrentlearningforheartsoundssegmentationbasedoninstantaneousfrequencyfeatures AT arinipedrodavid deeprecurrentlearningforheartsoundssegmentationbasedoninstantaneousfrequencyfeatures AT gaonaalvarojoaquin aprendizajeprofundoyrecurrenteparalasegmentaciondesonidoscardiacosbasadoencaracteristicasdefrecuenciainstantanea AT arinipedrodavid aprendizajeprofundoyrecurrenteparalasegmentaciondesonidoscardiacosbasadoencaracteristicasdefrecuenciainstantanea |
| _version_ |
1857042975812485120 |