Estudio experimental de la turbulencia y disipación en helio superfluido mediante osciladores mecánicos y visualización del flujo .

El objetivo de este trabajo es obtener información experimental que contribuya a dilucidar aspectos de la turbulencia en superfluidos. La tesis puede dividirse en dos partes. En la primer parte, se estudió la respuesta de un oscilador de doble paleta de Silicio, sumergido en Helio entre la tempe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Zemma, Elisa
Formato: Tesis NonPeerReviewed
Lenguaje:Español
Publicado: 2015
Materias:
Acceso en línea:http://ricabib.cab.cnea.gov.ar/497/1/1Zemma.pdf
Aporte de:
Descripción
Sumario:El objetivo de este trabajo es obtener información experimental que contribuya a dilucidar aspectos de la turbulencia en superfluidos. La tesis puede dividirse en dos partes. En la primer parte, se estudió la respuesta de un oscilador de doble paleta de Silicio, sumergido en Helio entre la temperatura de transición superfluida Tλ = 2,17 K y los 1,55 K. En este oscilador de alto factor de calidad Q, medimos la frecuencia de resonancia y la disipación para tres modos de oscilación, y definimos la velocidad crítica V_c cuando la disipación Q"-1 deja de ser lineal. La no linealidad se toma como un indicador del comienzo de la turbulencia del Helio líquido y encontramos que V_c decrece con la temperatura. Usamos la densidad de la componente normal del superfluido para obtener el número de Reynolds asociado a esta V_c y encontramos un valor que es prácticamente independiente de temperatura. Así, en el rango de temperaturas estudiado, la transición parecería estar gobernada por la fracción normal actuando como en un fluido clásico. Examinando las curvas de resonancia, de las cuales se obtiene el valor de Q, se encontró que cuando la amplitud de oscilación es lo suficientemente grande para generar turbulencia, su forma es afectada por dos regímenes de disipación y que la oscilación puede permanecer en régimen lineal para frecuencias no resonantes. Así, se introduce una ambigüedad en el cálculo del factor de disipación Q"-1. Con nuestros datos experimentales buscamos una forma de calcular este parámetro y evaluamos la fuerza de fricción como función de la velocidad en el oscilador de doble paleta de Si. Para la segunda parte, se obtuvieron imágenes del flujo turbulento basándonos en el hecho de que micrométricas partículas sólidas pueden trazar en detalle la dinámica y la turbulencia del Helio superfluido. Se desarrollaron técnicas para producir partículas de H_2 sólido dentro del Helio superfluido modificando el criostato para iluminarlas y filmarlas. Tomamos imágenes a 240 fps de estas partículas de H_2 que siguen el flujo generado por la oscilación de cuerpos de distintas geometrías en el interior del Helio, entre los 2,1 y 1,7 K Con un software que desarrollamos a partir del programa Matlab, computamos las velocidades y trayectorias de miles de partículas. Obtuvimos el número de partículas para intervalos igualmente espaciados del módulo de la velocidad, encontrando que la probabilidad de hallar partículas con altas velocidades tiene un decaimiento exponencial. Cuando reproducimos el experimento con partículas de talco en aire, como control, encontramos el resultado esperado para fluidos clásicos, una distribución gaussiana. También hemos obtenido la Transformada de Fourier de las velocidades de partículas individuales y de las velocidades promediadas, encontrando que esta última puede ser caracterizada, en todos los osciladores medidos, por un ruido blanco. Se finaliza presentando imágenes en las que las partículas de H_2 forman estructuras, posiblemente decorando vórtices ya que se mueven en forma coordinada, estrechándose o estirándose. Analizamos una de ellas y concluimos que muy probablemente se debe a un vórtice superfluido sujeto al oscilador.