Métodos de estimación aplicados a problemas de tráfico vehicular y sistemas eléctricos de potencia

En esta tesis se presentan una serie de investigaciones y desarrollos sobre algoritmos de estimación de estado en las áreas de sistemas eléctricos de potencia y tráfico vehicular. En el área de sistemas eléctricos de potencia, la estimación de estado es una herramienta fundamental de los sis...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Risso, Mariano
Formato: Artículo revista
Lenguaje:Español
Publicado: Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas 2016
Materias:
Acceso en línea:http://www.ridaa.unicen.edu.ar/xmlui/handle/123456789/673
Aporte de:
Descripción
Sumario:En esta tesis se presentan una serie de investigaciones y desarrollos sobre algoritmos de estimación de estado en las áreas de sistemas eléctricos de potencia y tráfico vehicular. En el área de sistemas eléctricos de potencia, la estimación de estado es una herramienta fundamental de los sistemas que participan en la operación de la red, ya que el mismo es el encargado de depurar las información que se obtiene. Clásicamente dicha herramienta se basa en el método de mínimos cuadrados ponderados. Recientemente el método de filtro de Kalman unscented fue propuesto en esta área mejorando los resultados de mínimos cuadrados ponderados cuando existen pequeños cambios en el sistema. Esta mejora se debe a que tiene en cuenta la historia del sistema. En este trabajo de tesis se presenta un nuevo método que combina lo mejor de ambos enfoques. En el área de tráfico vehicular, se presenta un algoritmo de estimación de estado basado en el filtro de Kalman unscented para estimar el tráfico en una sección de un autopista. Una de las formas más utilizadas para simular la evolución del tráfico en una sección de la autopista es un modelo macroscópico de segundo orden. Avances recientes dentro de este área utilizan una versión linealizada del modelo con el filtro Kalman. Considerando que en varias áreas, el filtro de Kalman unscented mejora los resultados del método linealizado, este trabajo tiene como objetivo la aplicación del mismo. Para ello, se presentan dos versiones del filtro de Kalman unscented que incorporan restricciones al dominio para poder ser aplicado al área de tráfico, obteniendo mejores resultados que la versión linealizada.