Visión artificial en la gestión y apoyo a la seguridad de los trabajadores

Las evaluaciones de riesgos y seguridad en el trabajo generalmente se han realizado con observaciones efectuadas in situ por personal especializado. Esta evaluación de riesgos tradicional es costosa e ineficaz, especialmente en los países en desarrollo, donde hay una necesidad de recursos humanos...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Massiris Fernández , Manlio Miguel
Otros Autores: Delrieux, Claudio Augusto
Formato: tesis doctoral
Lenguaje:Español
Publicado: 2021
Materias:
Acceso en línea:https://repositoriodigital.uns.edu.ar/xmlui/handle/123456789/5753
Aporte de:
Descripción
Sumario:Las evaluaciones de riesgos y seguridad en el trabajo generalmente se han realizado con observaciones efectuadas in situ por personal especializado. Esta evaluación de riesgos tradicional es costosa e ineficaz, especialmente en los países en desarrollo, donde hay una necesidad de recursos humanos más capacitados. Además, el estado del arte resalta que incluso los especialistas calificados carecen de precisión intra- e inter-observador, pues a menudo se equivocan en juicios de riesgos principalmente debido a sesgos subjetivos o condiciones visuales subóptimas en el lugar de trabajo, como ser iluminación reducida, oclusiones de equipos, auto-oclusiones y ángulos de video inadecuados. En esta tesis presentamos diversas propuestas, basadas en el uso de visión artificial, para facilitar la toma de decisiones, estandarizar el proceso de evaluación y reducir el tiempo requerido para estimar el riesgo ergonómico y cuantificar el uso de equipos de protección individual. En el primer capítulo se presenta la introducción a las tecnologías de la Industria 4.0 como marco básico de requerimiento de soluciones a los problemas antes mencionados. El segundo capítulo detalla las soluciones propuestas desde la visión artificial y las redes neuronales para la estimación del riesgo ergonómico. En el tercer capítulo se presentan dos soluciones basadas en redes neuronales para la inspección y cuantificación del uso de equipos de protección personal. Finalmente, se presentan las conclusiones y el trabajo futuro. Los resultados indicaron que los métodos propuestos facilitan el proceso de evaluación de riesgos y condiciones de trabajo en aplicaciones reales en entornos desafiantes, utilizando entre otras fuentes videos obtenidos por medio de cámaras deportivas egocéntricas, teléfonos inteligentes y drones.