Visión artificial en la gestión y apoyo a la seguridad de los trabajadores
Las evaluaciones de riesgos y seguridad en el trabajo generalmente se han realizado con observaciones efectuadas in situ por personal especializado. Esta evaluación de riesgos tradicional es costosa e ineficaz, especialmente en los países en desarrollo, donde hay una necesidad de recursos humanos...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | tesis doctoral |
| Lenguaje: | Español |
| Publicado: |
2021
|
| Materias: | |
| Acceso en línea: | https://repositoriodigital.uns.edu.ar/xmlui/handle/123456789/5753 |
| Aporte de: |
| Sumario: | Las evaluaciones de riesgos y seguridad en el trabajo generalmente se han realizado
con observaciones efectuadas in situ por personal especializado. Esta evaluación de
riesgos tradicional es costosa e ineficaz, especialmente en los países en desarrollo,
donde hay una necesidad de recursos humanos más capacitados. Además, el estado
del arte resalta que incluso los especialistas calificados carecen de precisión intra- e
inter-observador, pues a menudo se equivocan en juicios de riesgos principalmente
debido a sesgos subjetivos o condiciones visuales subóptimas en el lugar de trabajo,
como ser iluminación reducida, oclusiones de equipos, auto-oclusiones y ángulos de
video inadecuados.
En esta tesis presentamos diversas propuestas, basadas en el uso de visión artificial,
para facilitar la toma de decisiones, estandarizar el proceso de evaluación y reducir el
tiempo requerido para estimar el riesgo ergonómico y cuantificar el uso de equipos de
protección individual. En el primer capítulo se presenta la introducción a las
tecnologías de la Industria 4.0 como marco básico de requerimiento de soluciones a los
problemas antes mencionados. El segundo capítulo detalla las soluciones propuestas
desde la visión artificial y las redes neuronales para la estimación del riesgo
ergonómico. En el tercer capítulo se presentan dos soluciones basadas en redes
neuronales para la inspección y cuantificación del uso de equipos de protección
personal. Finalmente, se presentan las conclusiones y el trabajo futuro. Los resultados
indicaron que los métodos propuestos facilitan el proceso de evaluación de riesgos y
condiciones de trabajo en aplicaciones reales en entornos desafiantes, utilizando entre
otras fuentes videos obtenidos por medio de cámaras deportivas egocéntricas,
teléfonos inteligentes y drones. |
|---|