Oxidación parcial de hidrocarburos sobre óxidos mixtos de vanadio y antimonio : modelado computacional

En esta tesis se ha estudiado la oxidación parcial de hidrocarburos sobre antimonato de vanadio (VSbO4), empleando metodos computacionales para calcular energías de adsorción de diferentes modelos catalíticos. Para explorar las geometrías de adsorción, la búsqueda se orientó en base a datos expe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Seitz, Hernán
Otros Autores: Brizuela, Graciela
Formato: tesis doctoral
Lenguaje:Español
Publicado: 2014
Materias:
Acceso en línea:http://repositoriodigital.uns.edu.ar/handle/123456789/440
Aporte de:
Descripción
Sumario:En esta tesis se ha estudiado la oxidación parcial de hidrocarburos sobre antimonato de vanadio (VSbO4), empleando metodos computacionales para calcular energías de adsorción de diferentes modelos catalíticos. Para explorar las geometrías de adsorción, la búsqueda se orientó en base a datos experimentales de adsorción, de estudios de estructuras de sólidos catalíticos y de mecanismos de reacción propuestos en la literatura. A su vez, se analizaron etapas iniciales de la reacción de amoxidación de hidrocarburos, ya que aún no se comprende de forma completa el comportamiento catalítico del sistema en estudio. Los cambios en las estructuras electrónicas de las moléculas adsorbidas y de la superficie catalítica, provocados por la interacción catalizador-adsorbato, fueron analizados mediante VASP (Vienna Ab-Initio Simulation Package), SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) y el método de enlace apretado YAeHMOP (Yet Another extended Hückel Molecular Orbital Program). Se estudió la estructura de los sitios activos de Lewis (catión V) y Bronsted de la superficie catalítica VSbO4(110) estequiométrica, así como la adsorción de amoníaco sobre los mismos. Los resultados mostraron interacciones N-V (Lewis) y N-O (Bronsted) débiles. Las geometrías de adsorción no mostraron interacciones del N con los restantes átomos de la superficie. Se presentó un modelo de superficie catalítica VSbO4(110) modificado, que represente la composición real reportada experimentalmente en la literatura. Se introdujeron vacancias de V y Sb, para presentar un modelo de estructura con optimización de geometrías. Como resultado de esto, se obtuvieron los cambios en las estructuras electrónicas de los átomos adyacentes a las vacancias, y su posible correlato con la reactividad, la formación de cuplas redox y las propiedades ácido-base. Finalmente, la adsorción de propileno fue analizada desde un punto de vista estructural y electrónico, obteniéndose la geometría de adsorción energéticamente más estable. Los resultados indican que la adsorción más estable ocurre sobre cationes Sb, mediante interacciones orbitales débiles. La geometría más estable permitiría la adsorción simultánea de amoníaco, para la posterior amoxidación del hidrocarburo.