Resolución de sistemas de ecuaciones polinomiales sobre álgebras de post k-cíclicas
En el trabajo An equivalence between Varieties of ciclic Post Algebras and Varietiesgenerated by a finite field [1] demostramos una equivalencia entre la variedad V(Lp;k) generada por el álgebra de Post k-cíclica simple de orden p, Lp;k y la variedad V(F(pk)) generada por el cuerpo con pk elementos...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | tesis doctoral |
| Lenguaje: | Español |
| Publicado: |
2011
|
| Materias: | |
| Acceso en línea: | http://repositoriodigital.uns.edu.ar/handle/123456789/2240 |
| Aporte de: |
| Sumario: | En el trabajo An equivalence between Varieties of ciclic Post Algebras and Varietiesgenerated by a finite field [1] demostramos una equivalencia entre la variedad V(Lp;k) generada por el álgebra de Post k-cíclica simple de orden p, Lp;k y la variedad V(F(pk)) generada por el cuerpo con pk elementos [F(pk);+; .; F(p)]. La existencia de una interpretación entre ambas variedades nos ha permitido estudiar la resolución de sistemas de ecuaciones polinomiales sobre un álgebra Lp;k, utilizando técnicas usuales del Álgebra Conmutativa en un problema propio de la Lógica Algebraica. En Resolution of Algebraic Systems of Equations in the Variety of Cyclic Post Algebras [13] mostramos un camino para resolver un sistema de ecuaciones algebraicas sobre una álgebra de Post cíclica de orden p, con p primo, utilizando la interpretación anterior, bases de Gröbner y algoritmos programados en Maple. En esta tesis describimos un método contructivo que permite obtener a partir de un cuerpo [F(pk);+; . ; F(p)], un álgebra de Post k--cíclica de orden p, con p primo positivo y k > 1. Las operaciones del álgebra de Post cíclica se expresan como términos en el lenguaje del cuerpo, y recíprocamente, las operaciones del cuerpo como términos en el lenguaje del álgebra de Post k-cíclica. Los algoritmos programados en Maple muestran cómo calcular estas operaciones de manera efectiva. De esto se deduce una interpretación 1 entre la variedad V(Lp;k) y la variedad V(F(pk)), y una interpretación 2 de V(F(pk)) en V(Lp;k) tal que 2 1 (B) = B para toda álgebra B 2 V(Lp;k) y 1 2(R) = R para todo R 2 V(F(pk)). Esta equivalencia permite analizar la existencia y búsqueda de soluciones de un sistema de ecuaciones polinomiales en Lp;k[X1,...,Xn]. Mostramos en este trabajo dos caminos diferentes para la resolución de estos sistemas. El primer camino consiste en aplicar la interpretación 1 para obtener la expresión de una ecuación algebraica postiana en el lenguaje de F(pk)[X1,...,Xn] y así poder expresar todas las ecuaciones del sistema en F(pk)[X1,...,Xn]. De esta forma es posible buscar una base de Gröbner del ideal generado por los polinomios del sistema, analizar la existencia de soluciones y organizar su búsqueda. Aplicando luego la interpretación 2 obtenemos un sistema equivalente al original en el lenguaje postiano de Lp;k[X1,...,Xn]. Completamos esta idea presentando varios
ejemplos que explican detalladamente el método propuesto junto con los algoritmos que muestran a un mismo polinomio en ambos anillos. El segundo camino consiste en definir el concepto de base de Gröbner de un ideal I en Lp;k[X1,...,Xn] utilizando nuevamente las interpretaciones 1 y 2. Explicamos este proceso en general y en el caso particular de p = 2 y k = 1, damos un algoritmo de división y un teorema para calcular el S-polinomio de dos polinomios en dos variables. Enunciamos las dificultades que se presentan al buscar directamente una base de Gröbner de un ideal I en Lp;k[X1,...,Xn] cuando p > 3, destacando que a pesar de las mismas, resulta interesante poder dividir en un anillo de polinomios sobre una estructura algebraica ordenada. |
|---|