On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space
We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We s...
Guardado en:
| Autores principales: | Falomir, Horacio Alberto, González Pisani, Pablo Andrés, Vega, Federico Gaspar, Cárcamo, D., Méndez, F., Loewe, M. |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2016
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/99534 https://ri.conicet.gov.ar/11336/54415 |
| Aporte de: |
Ejemplares similares
Noncommutative Landau problem for particle-vortex system
por: Correa, D.H., et al.
Publicado: (2003)
por: Correa, D.H., et al.
Publicado: (2003)
Ejemplares similares
-
Dimensional Transmutation and Dimensional Regularization in Quantum Mechanics : II. Rotational Invariance
por: Camblong, Horacio E., et al.
Publicado: (2001) -
Oscillators in a (2+1)-dimensional noncommutative space
por: Vega, Federico Gaspar
Publicado: (2014) -
Nonrelativistic supersymmetry in noncommutative space
por: Lozano, Gustavo Sergio, et al.
Publicado: (2005) -
Conformal invariance in three-dimensional rotating turbulence
por: Thalabard, S., et al.
Publicado: (2011) -
Conformal invariance in three-dimensional rotating turbulence
por: Thalabard, S., et al.