Variations of the free implicative semilattice extension of a Hilbert algebra

Celani and Jansana (Math Log Q 58(3):188–207, 2012) give an explicit description of the free implicative semilattice extension of a Hilbert algebra. In this paper, we give an alternative path conducing to this construction. Furthermore, following our procedure, we show that an adjunction can be obta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Castiglioni, José Luis, San Martín, Hernán Javier
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/99526
https://ri.conicet.gov.ar/11336/94687
http://link.springer.com/10.1007/s00500-018-3426-0
https://arxiv.org/abs/1807.02423
Aporte de:
Descripción
Sumario:Celani and Jansana (Math Log Q 58(3):188–207, 2012) give an explicit description of the free implicative semilattice extension of a Hilbert algebra. In this paper, we give an alternative path conducing to this construction. Furthermore, following our procedure, we show that an adjunction can be obtained between the algebraic categories of Hilbert algebras with supremum and that of generalized Heyting algebras. Finally, in the last section, we describe a functor from the algebraic category of Hilbert algebras to that of generalized Heyting algebras, of possible independent interest.