Group theoretical analysis of a quantum-mechanical three-dimensional quartic anharmonic oscillator
This paper illustrates the application of group theory to a quantum-mechanical three-dimensional quartic anharmonic oscillator with Oh symmetry. It is shown that group theory predicts the degeneracy of the energy levels and facilitates the application of perturbation theory and the Rayleigh-Ritz var...
Guardado en:
| Autor principal: | Fernández, Francisco Marcelo |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2015
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/99429 https://ri.conicet.gov.ar/11336/48728 https://arxiv.org/abs/1501.00975 |
| Aporte de: |
Ejemplares similares
-
Eigenvalues and eigenfunctions of the anharmonic oscillator V(x, y) = x2y2
por: Fernández, Francisco Marcelo, et al.
Publicado: (2014) -
A quantum-mechanical anharmonic oscillator with a most interesting spectrum
por: Amore, Paolo, et al.
Publicado: (2017) -
Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues
por: Flego, Silvana, et al.
Publicado: (2011) -
Exact and approximate expressions for the period of anharmonic oscillators
por: Amore, Paolo, et al.
Publicado: (2005) -
On the symmetry of three identical interacting particles in a one-dimensional box
por: Amore, Paolo, et al.
Publicado: (2015)