Scalar resonances in axially symmetric spacetimes

We study properties of resonant solutions to the scalar wave equation in several axially symmetric spacetimes. We prove that nonaxial resonant modes do not exist neither in the Lanczos dust cylinder, the extreme (2 + 1) dimensional Bañados-Taitelboim-Zanelli (BTZ) spacetime nor in a class of simple...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ranea Sandoval, Ignacio Francisco, Vucetich, Héctor
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2015
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/99145
https://ri.conicet.gov.ar/11336/49958
https://arxiv.org/abs/1503.03755
Aporte de:
Descripción
Sumario:We study properties of resonant solutions to the scalar wave equation in several axially symmetric spacetimes. We prove that nonaxial resonant modes do not exist neither in the Lanczos dust cylinder, the extreme (2 + 1) dimensional Bañados-Taitelboim-Zanelli (BTZ) spacetime nor in a class of simple rotating wormhole solutions. Moreover, we find unstable solutions to the wave equation in the Lanczos dust cylinder and in the r2 < 0 region of the extreme (2 + 1) dimensional BTZ spacetime, two solutions that possess closed timelike curves. Similarities with previous results obtained for the Kerr spacetime are explored.