Normal projections in Krein spaces
Given a complex Krein space H with fundamental symmetry J, the aim of this note is to characterize the set of J-normal projections Q={Q∈L(H):Q2=QandQ#Q=QQ#}. The ranges of the projections in QQ are exactly those subspaces of HH which are pseudo-regular. For a fixed pseudo-regular subspace S ,...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
2013
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/97685 https://ri.conicet.gov.ar/11336/12167 http://link.springer.com/article/10.1007/s00020-013-2063-3 |
| Aporte de: |
| Sumario: | Given a complex Krein space H with fundamental symmetry J, the aim of this note is to characterize the set of J-normal projections Q={Q∈L(H):Q2=QandQ#Q=QQ#}. The ranges of the projections in QQ are exactly those subspaces of HH which are pseudo-regular. For a fixed pseudo-regular subspace S , there are infinitely many J-normal projections onto it, unless SS is regular. Therefore, most of the material herein is devoted to parametrizing the set of J-normal projections onto a fixed pseudo-regular subspace S. |
|---|