A Shannon-Tsallis transformation
Via a first-order linear differential equation, we determine a general link between two different solutions of the MaxEnt variational problem, namely, the ones that correspond to using either Shannon’s or Tsallis’ entropies in the concomitant variational problem. It is shown that the two variations...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
2013
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/97218 https://ri.conicet.gov.ar/11336/23396 https://arxiv.org/abs/1201.4507 |
| Aporte de: |
| Sumario: | Via a first-order linear differential equation, we determine a general link between two different solutions of the MaxEnt variational problem, namely, the ones that correspond to using either Shannon’s or Tsallis’ entropies in the concomitant variational problem. It is shown that the two variations lead to equivalent solutions that have different appearances but contain the same information. These solutions are linked by our transformation. However, the so-called collision entropy (Tsallis’ one with q=2) does not have a Shannon counterpart. |
|---|