High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences
We apply second order finite differences to calculate the lowest eigenvalues of the Helmholtz equation, for complicated non-tensor domains in the plane, using different grids which sample exactly the border of the domain. We show that the results obtained applying Richardson and Padé-Richardson extr...
Guardado en:
| Autores principales: | Amore, Paolo, Fernández, Francisco Marcelo, Boyd, John. P., Boris, Rösler |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2016
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/96795 https://ri.conicet.gov.ar/11336/81590 |
| Aporte de: |
Ejemplares similares
-
Numerical experiments on the solution of Helmholtz equation in the case of domains of complicated boundary shape.
por: Sánchez Sarmiento, G., et al.
Publicado: (1979) -
Nonconforming Galerkin methods for the Helmholtz equation
por: Douglas Jr., Jim, et al.
Publicado: (2001) -
El yo defensor : Herbart y la escuela de Helmholtz
por: Quintana López, Laura
Publicado: (2015) -
Accurate calculation of the eigenvalues of non-uniform strings and membranes
por: Amore, Paolo, et al.
Publicado: (2012) -
Finite Element Approximation for the Fractional Eigenvalue Problem
por: Borthagaray, J.P., et al.