A low cost advance encryption standard (AES) co-processor implementation

The need for privacy has become a major priority for both governments and civilians desiring protection from signal interception. Widespread use of personal communications devices has only increased demand for a level of security on previously insecure communications. This paper presents a novel low...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hernandez, Orlando J., Sodon, Thomas, Adel, Michael, Kupp, Nathan
Formato: Articulo
Lenguaje:Inglés
Publicado: 2008
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/9617
http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr08-2.pdf
Aporte de:
Descripción
Sumario:The need for privacy has become a major priority for both governments and civilians desiring protection from signal interception. Widespread use of personal communications devices has only increased demand for a level of security on previously insecure communications. This paper presents a novel low-cost architecture for the Advanced Encryption Standard (AES) algorithm utilizing a field programmable gate array (FPGA). In as much as possible, this architecture uses a bit-serial approach, and it is also suitable for VLSI implementations. In this implementation, the primary objective was not to increase throughput or decrease latency, but to balance these factors in order to lower the cost. A focus on low cost resulted in a design well-suited for SoC implementations. This allows for scaling of the architecture towards vulnerable portable and cost-sensitive communications devices in consumer and military applications.