Multiparameter quantum groups, bosonizations and cocycle deformations

The multiparameter quantized enveloping algebras Uq(gA) constructed by Pei, Hu and Rosso [Quantum affine algebras, extended affine Lie algebras, and their applications, 145–171, Amer. Math. Soc., Providence, 2010] are presented as the pointed Hopf algebras Ue(Dred, `) defined by Andruskiewitsch and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: García, Gastón Andrés
Formato: Articulo
Lenguaje:Inglés
Publicado: 2017
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/95938
https://ri.conicet.gov.ar/11336/66719
http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol57
https://arxiv.org/abs/1406.2561
http://inmabb.criba.edu.ar/revuma/pdf/v57n2/v57n2a01.pdf
Aporte de:
Descripción
Sumario:The multiparameter quantized enveloping algebras Uq(gA) constructed by Pei, Hu and Rosso [Quantum affine algebras, extended affine Lie algebras, and their applications, 145–171, Amer. Math. Soc., Providence, 2010] are presented as the pointed Hopf algebras Ue(Dred, `) defined by Andruskiewitsch and Schneider [Ann. of Math. (2) 171 (2010), 375–417]. The result is applied to show that under a certain assumption Uq(gA) depends, up to cocycle deformation, on only one parameter in each connected component of the associated Dynkin diagram. In the special case that gA is simple, this was already shown by Pei, Hu and Rosso in an alternative way.