An evolutionary algorithm to track changes of optimum value locations in dynamic environments
Non-stationary, or dynamic, problems change over time. There exist a variety of forms of dynamism. The concept of dynamic environments in the context of this paper means that the fitness landscape changes during the run of an evolutionary algorithm. Genetic diversity is crucial to provide the neces...
Guardado en:
| Autores principales: | Aragón, Victoria S., Esquivel, Susana Cecilia |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2004
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/9493 http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct04-1.pdf |
| Aporte de: |
Ejemplares similares
-
Evolutionaty algorithms with clustering for dynamic fitness landscapes
por: Esquivel, Susana Cecilia, et al.
Publicado: (2005) -
Evolutionary optimization in dynamic fitness landscape environments
por: Aragón, Victoria S., et al.
Publicado: (2003) -
MCPC: another approach to crossover in genetic algorithms
por: Esquivel, Susana Cecilia, et al.
Publicado: (1995) -
Improving evolutionary algorithms performance by extending incest prevention
por: Alfonso, Hugo, et al.
Publicado: (1998) -
Incest prevention and multirecombination in evolutionary algorithms to deal with the flow shop scheduling problem
por: Bain, María Elena, et al.
Publicado: (2000)