Knowledge Insertion: an Efficient Approach to Reduce Search Effort in Evolutionary Scheduling
Evolutionary algorithms (EAs) are merely blind search algorithms, which only make use of the relative fitness of solutions, but completely ignore the nature of the problem. Their performance can be improved by using new multirecombinative approaches, which provide a good balance between exploration...
Guardado en:
| Autores principales: | Pandolfi, Daniel, Lasso, Marta Graciela, San Pedro, María Eugenia de, Villagra, Andrea, Gallard, Raúl Hector |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2004
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/9489 http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Aug04-5.pdf |
| Aporte de: |
Ejemplares similares
-
Knowledge insertion: an efficient approach to reduce search effort in evolutionary scheduling
por: Pandolfi, Daniel, et al.
Publicado: (2003) -
Inserting knowledge in multirecombined evolutionary algorithms for the flow shop scheduling problem
por: Villagra, Andrea, et al.
Publicado: (2002) -
Adding problem-specific knowledge in evolutionary algorithms to solve W-T scheduling problems
por: San Pedro, María Eugenia de, et al.
Publicado: (2002) -
A study of genotype and phenotype distributions in hybrid evolutionary algorithms to solve the flow shop scheduling problem
por: Minetti, Gabriela F., et al.
Publicado: (2002) -
A GRASP algorithm to solve the problem of dependent tasks scheduling in different machines
por: Tupia Anticona, Manuel
Publicado: (2006)