Self adaptation of parameters for MCPC in genetic algorithms
As a new promising crossover method, multiple crossovers per couple (MCPC) deserves special attention in evolutionary computing field. Allowing multiple crossovers per couple on a selected pair of parents provided an extra benefit in processing time and similar quality of solutions when contrasted a...
Guardado en:
| Autores principales: | Esquivel, Susana Cecilia, Leiva, Héctor Ariel, Gallard, Raúl Hector |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2000
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/9385 http://journal.info.unlp.edu.ar/wp-content/uploads/2015/papers_02/self.pdf |
| Aporte de: |
Ejemplares similares
-
Self-adaptation of parameters for MCPC in genetic algorithms
por: Esquivel, Susana Cecilia, et al.
Publicado: (1998) -
MCPC: another approach to crossover in genetic algorithms
por: Esquivel, Susana Cecilia, et al.
Publicado: (1995) -
Multiple crossover per couple and fitness proportional couple selection in genetic algorithms
por: Esquivel, Susana Cecilia, et al.
Publicado: (1997) -
A genetic approach using direct representation of solution for parallel task scheduling problem
por: Esquivel, Susana Cecilia, et al.
Publicado: (2000) -
Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms
por: Stark, Natalia, et al.
Publicado: (2016)