A parallel approach for backpropagation learning of neural networks
Fast response, storage efficiency, fault tolerance and graceful degradation in face of scarce or spurious inputs make neural networks appropiate tools for Intelligent Computer Systems. But on the other hand, learning algorithms for neural networks involve CPU intensive processing and consequently gr...
Guardado en:
| Autores principales: | Crespo, María Liz, Piccoli, María Fabiana, Printista, Alicia Marcela, Gallard, Raúl Hector |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
1999
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/9378 http://journal.info.unlp.edu.ar/wp-content/uploads/2015/papers_01/a%20parallel.pdf |
| Aporte de: |
Ejemplares similares
-
A parallel approach for backpropagation learning of neural networks
por: Crespo, María Liz, et al.
Publicado: (1997) -
Parallel backpropagation neural networks forTask allocation by means of PVM
por: Crespo, María Liz, et al.
Publicado: (1998) -
Implementación paralela del algoritmo backpropagation en un cluster de computadoras
por: Alfonso, Marcelo, et al.
Publicado: (2006) -
Implementation of boolean neural networks on parallel computers
por: Carvalho, Andre Carlos Ponce de Leon Ferreira de, et al.
Publicado: (1996) -
Learning and validation in neural network ensembles
por: Granitto, Pablo Miguel, et al.
Publicado: (2001)