k-TVT: a flexible and effective method for early depression detection

The increasing use of social media allows the extraction of valuable information to early prevent some risks. Such is the case of the use of blogs to early detect people with signs of depression. In order to address this problem, we describe k-temporal variation of terms (k-TVT), a method which uses...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cagnina, Leticia, Errecalde, Marcelo Luis, Garciarena Ucelay, María José, Funez, Dario G., Villegas, María Paula
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/90534
Aporte de:
Descripción
Sumario:The increasing use of social media allows the extraction of valuable information to early prevent some risks. Such is the case of the use of blogs to early detect people with signs of depression. In order to address this problem, we describe k-temporal variation of terms (k-TVT), a method which uses the variation of vocabulary along the different time steps as concept space to represent the documents. An interesting particularity of this approach is the possibility of setting a parameter (the k value) depending on the urgency (earliness) level required to detect the risky (depressed) cases. Results on the early detection of depression data set from eRisk 2017 seem to confirm the robustness of k-TVT for different urgency levels using SVM as classifier. Besides, some recent results on an extension of this collection would confirm the effectiveness of k-TVT as one of the state-of-the-art methods for early depression detection.