Extracción de información de evoluciones clínicas digitales mediante técnicas de machine learning
Este trabajo demuestra el uso de un modelo de machine learning para extraer información referida a factores de riesgo cardiovascular de evoluciones clínicas desestructuradas redactadas en español. El mismo describe un procedimiento para el análisis de corpus y filtrado de evoluciones relevantes para...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Español |
| Publicado: |
2019
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/88146 |
| Aporte de: |
| Sumario: | Este trabajo demuestra el uso de un modelo de machine learning para extraer información referida a factores de riesgo cardiovascular de evoluciones clínicas desestructuradas redactadas en español. El mismo describe un procedimiento para el análisis de corpus y filtrado de evoluciones relevantes para entrenamiento y testeo del modelo. Los resultados muestran la efectividad de los recursos utilizados en extraer la información relevante y, a su vez, plantean una relación entre la complejidad de la información a extraer, y la cantidad de datos de ejemplo necesaria para alcanzar valores de performance elevados. |
|---|