A Hierarchical Two-tier Approach to Hyper-parameter Optimization in Reinforcement Learning
Optimization of hyper-parameters in reinforcement learning (RL) algorithms is a key task, because they determine how the agent will learn its policy by interacting with its environment, and thus what data is gathered. In this work, an approach that uses Bayesian optimization to perform a two-step op...
Guardado en:
| Autores principales: | Barsce, Juan Cruz, Palombarini, Jorge, Martínez, Ernesto |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2019
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/87851 |
| Aporte de: |
Ejemplares similares
-
A Hierarchical Two-tier Approach to Hyper-parameter Optimization in Reinforcement Learning
por: Barsce, Juan Cruz, et al.
Publicado: (2020) -
Applications of combinatorial optimization
Publicado: (2010) -
Integer and combinatorial optimization /
por: Nemhauser, George, et al.
Publicado: (1999) -
Optimal design techniques for distributed parameter systems
por: Banks, H.T., et al. -
Optimal design techniques for distributed parameter systems
Publicado: (2013)