A Hierarchical Two-tier Approach to Hyper-parameter Optimization in Reinforcement Learning

Optimization of hyper-parameters in reinforcement learning (RL) algorithms is a key task, because they determine how the agent will learn its policy by interacting with its environment, and thus what data is gathered. In this work, an approach that uses Bayesian optimization to perform a two-step op...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Barsce, Juan Cruz, Palombarini, Jorge, Martínez, Ernesto
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/87851
Aporte de:

Ejemplares similares