Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillators
We draw attention on the fact that the Riccati-Padé method developed some time ago enables the accurate calculation of bound-state eigenvalues as well as of resonances embedded either in the continuum or in the discrete spectrum. We apply the approach to several one-dimensional models that exhibit d...
Guardado en:
| Autores principales: | Fernández, Francisco Marcelo, García, Javier |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2017
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/87544 |
| Aporte de: |
Ejemplares similares
-
A quantum-mechanical anharmonic oscillator with a most interesting spectrum
por: Amore, Paolo, et al.
Publicado: (2017) -
Accurate calculation of the eigenvalues of a new simple class of superpotentials in SUSY quantum mechanics
por: Fernández, Francisco Marcelo
Publicado: (2013) -
Exact and approximate expressions for the period of anharmonic oscillators
por: Amore, Paolo, et al.
Publicado: (2005) -
Comment on: Exact solution of the inverse-square-root potential V(r) = −α/√r
por: Fernández, Francisco Marcelo
Publicado: (2017) -
Eigenvalues and eigenfunctions of the anharmonic oscillator V(x, y) = x2y2
por: Fernández, Francisco Marcelo, et al.
Publicado: (2014)