Highly accurate calculation of the real and complex eigenvalues of one-dimensional anharmonic oscillators
We draw attention on the fact that the Riccati-Padé method developed some time ago enables the accurate calculation of bound-state eigenvalues as well as of resonances embedded either in the continuum or in the discrete spectrum. We apply the approach to several one-dimensional models that exhibit d...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2017
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/87544 |
| Aporte de: |
| Sumario: | We draw attention on the fact that the Riccati-Padé method developed some time ago enables the accurate calculation of bound-state eigenvalues as well as of resonances embedded either in the continuum or in the discrete spectrum. We apply the approach to several one-dimensional models that exhibit different kind of spectra. In particular we test a WKB formula for the imaginary part of the resonance in the discrete spectrum of a three-well potential. |
|---|