On the nature of the Tsallis-Fourier transform
By recourse to tempered ultradistributions, we show here that the effect of a q-Fourier transform (qFT) is to map equivalence classes of functions into other classes in a one-to-one fashion. This suggests that Tsallis' q-statistics may revolve around equivalence classes of distributions and not...
Guardado en:
| Autores principales: | Plastino, Ángel Luis, Rocca, Mario Carlos |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2015
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/86308 |
| Aporte de: |
Ejemplares similares
-
Inversion of Umarov–Tsallis–Steinberg’s q-Fourier transform and the complex-plane generalization
por: Plastino, Ángel Luis, et al.
Publicado: (2012) -
The Tsallis-Laplace transform
por: Plastino, Ángel Luis, et al.
Publicado: (2013) -
Reflections on the q-Fourier transform and the q-Gaussian function
por: Plastino, Ángel Luis, et al.
Publicado: (2013) -
Addendum to “Treatment of Gamow states using tempered ultradistributions”
por: De Paoli, Ángel Luis, et al.
Publicado: (2000) -
Treatment of Gamow States, Using Tempered Ultradistributions
por: De Paoli, Ángel Luis, et al.
Publicado: (1999)