On normal operator logarithms
Let X,Y be normal bounded operators on a Hilbert space such that e X=eY. If the spectra of X and Y are contained in the strip S of the complex plane defined by |I(z)|≤π, we show that |X|=|Y|. If Y is only assumed to be bounded, then |X|Y=Y|X|. We give a formula for X-Y in terms of spectral projectio...
Guardado en:
| Autor principal: | Chiumiento, Eduardo Hernán |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2013
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/85121 |
| Aporte de: |
Ejemplares similares
-
Spectral Shorted Operators
por: Antezana, Jorge Abel, et al.
Publicado: (2006) -
On the geometry of normal projections in Krein spaces
por: Chiumiento, Eduardo Hernán, et al.
Publicado: (2015) -
Pseudodifferential operators and spectral theory /
por: Shubin, M. A. (Mikhail Aleksandrovich), 1944-2020
Publicado: (1987) -
Spectral reprsentations of linear operators /
por: Friedrichs, K. O. (Kurt Otto), 1901
Publicado: (1948) -
Spectral properties of Hamiltonian operators /
por: Jörgens, Konrad, 1926-
Publicado: (1973)