Index of Hadamard multiplication by positive matrices II
For each n×n positive semidefinite matrix A we define the minimal index I(A)=max{λ≥0:A∘B≥λB for all B≥0} and, for each norm N, the N-index I<SUB>N</SUB>(A)=min{N(A∘B):B≥0 and N(B)=1}, where A ∘ B=[a<SUB>ij</SUB>b<SUB>ij</SUB>] is the Hadamard or Schur product of A...
Guardado en:
| Autores principales: | Corach, Gustavo, Stojanoff, Demetrio |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2001
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/84728 |
| Aporte de: |
Ejemplares similares
-
Generalized Schur complements and P-complementable operators
por: Massey, Pedro Gustavo, et al.
Publicado: (2004) -
Löwner's theorem and the differential geometry of the space of positive operators
por: Andruchow, Esteban, et al.
Publicado: (1998) -
Löwner's theorem and the differential geometry of the space of positive operators
por: Andruchow, E., et al. -
Some operator inequalities for unitarily invariant norms
por: Cano, Cristina, et al.
Publicado: (2005) -
Theory of Bergman spaces
por: Hedenmalm, Haakan
Publicado: (2000)