Index of Hadamard multiplication by positive matrices II

For each n×n positive semidefinite matrix A we define the minimal index I(A)=max{λ≥0:A∘B≥λB for all B≥0} and, for each norm N, the N-index I<SUB>N</SUB>(A)=min{N(A∘B):B≥0 and N(B)=1}, where A ∘ B=[a<SUB>ij</SUB>b<SUB>ij</SUB>] is the Hadamard or Schur product of A...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Corach, Gustavo, Stojanoff, Demetrio
Formato: Articulo
Lenguaje:Inglés
Publicado: 2001
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/84728
Aporte de:
Descripción
Sumario:For each n×n positive semidefinite matrix A we define the minimal index I(A)=max{λ≥0:A∘B≥λB for all B≥0} and, for each norm N, the N-index I<SUB>N</SUB>(A)=min{N(A∘B):B≥0 and N(B)=1}, where A ∘ B=[a<SUB>ij</SUB>b<SUB>ij</SUB>] is the Hadamard or Schur product of A=[a<SUB>ij</SUB>] and B=[b<SUB>ij</SUB>] and B≥0 means that B is a positive semidefinite matrix. A comparison between these indexes is done, for different choices of the norm N. As an application we find, for each bounded invertible selfadjoint operator S on a Hilbert space, the best constant M(S) such that ∥STS+S<SUP>-1</SUP>TS<SUP>-1</SUP>∥≥M(S)∥T∥ for all T≥0.