Spectral shorted matrices
Given a n × n positive semidefinite matrix A and a subspace S of ℂn, ∑(S, A) denotes the shorted matrix of A to S. We consider the notion of spectral shorted matrix ρ(S, A) = limm→∞ ∑(S, Am)1/m. We completely characterize this martix in terms of script S sign and the spectrum and the eigenspaces of...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2004
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/84436 |
| Aporte de: |
| Sumario: | Given a n × n positive semidefinite matrix A and a subspace S of ℂn, ∑(S, A) denotes the shorted matrix of A to S. We consider the notion of spectral shorted matrix ρ(S, A) = limm→∞ ∑(S, Am)1/m. We completely characterize this martix in terms of script S sign and the spectrum and the eigenspaces of A. We show the relation of this notion with the spectral order of matrices and the Kolmogorov's complexity of A to a vector ξ ℂn. |
|---|