Spectral shorted matrices

Given a n × n positive semidefinite matrix A and a subspace S of ℂn, ∑(S, A) denotes the shorted matrix of A to S. We consider the notion of spectral shorted matrix ρ(S, A) = limm→∞ ∑(S, Am)1/m. We completely characterize this martix in terms of script S sign and the spectrum and the eigenspaces of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Antezana, Jorge Abel, Corach, Gustavo, Stojanoff, Demetrio
Formato: Articulo
Lenguaje:Inglés
Publicado: 2004
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/84436
Aporte de:
Descripción
Sumario:Given a n × n positive semidefinite matrix A and a subspace S of ℂn, ∑(S, A) denotes the shorted matrix of A to S. We consider the notion of spectral shorted matrix ρ(S, A) = limm→∞ ∑(S, Am)1/m. We completely characterize this martix in terms of script S sign and the spectrum and the eigenspaces of A. We show the relation of this notion with the spectral order of matrices and the Kolmogorov's complexity of A to a vector ξ ℂn.