Shorting selfadjoint operators in Hilbert spaces
Given a closed subspace S of a Hilbert space H and a (bounded) selfadjoint operator B acting on H, a min-max representation of the shorted operator (or Schur complement) of B to S is obtained under compatibility hypotheses. Also, an extension of Pekarev's formula is given.
Guardado en:
| Autores principales: | Giribet, Juan Ignacio, Maestripieri, Alejandra Laura, Martínez Pería, Francisco Dardo |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2008
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/84288 |
| Aporte de: |
Ejemplares similares
-
Shorting selfadjoint operators in Hilbert spaces
por: Giribet, J.I., et al. -
Shorting selfadjoint operators in Hilbert spaces
Publicado: (2008) -
Positive decompositions of selfadjoint operators
por: Fongi, G., et al. -
Bilateral shorted operators and parallel sums
por: Antezana, Jorge Abel, et al.
Publicado: (2006) -
Positive decompositions of selfadjoint operators
Publicado: (2010)