Shorting selfadjoint operators in Hilbert spaces
Given a closed subspace S of a Hilbert space H and a (bounded) selfadjoint operator B acting on H, a min-max representation of the shorted operator (or Schur complement) of B to S is obtained under compatibility hypotheses. Also, an extension of Pekarev's formula is given.
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2008
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/84288 |
| Aporte de: |
| Sumario: | Given a closed subspace S of a Hilbert space H and a (bounded) selfadjoint operator B acting on H, a min-max representation of the shorted operator (or Schur complement) of B to S is obtained under compatibility hypotheses. Also, an extension of Pekarev's formula is given. |
|---|