Genome sequence and analysis of the tuber crop potato
Potato (<i>Solanum tuberosum</i> L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato c...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2011
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/83923 |
| Aporte de: |
| Sumario: | Potato (<i>Solanum tuberosum</i> L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop. |
|---|