An explicit right inverse of the divergence operator which is continuous in weighted norms
The existence of a continuous right inverse of the divergence operator in W<SUP>1,p</SUP><SUB>0</SUB> (Ω)<SUP>n</SUP>, 1 < p < ∞, is a well known result which is basic in the analysis of the Stokes equations. The object of this paper is to show that the cont...
Guardado en:
| Autores principales: | Durán, Ricardo Guillermo, Muschietti, María Amelia |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2001
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/83495 |
| Aporte de: |
Ejemplares similares
-
An elementary proof of the continuity from L 2 0(Ω) to H 1 0 (Ω) n of bogovskii's right inverse of the divergence
por: Durán, R.G. -
An elementary proof of the continuity from L 2 0(Ω) to H 1 0 (Ω) n of bogovskii's right inverse of the divergence
por: Duran, Ricardo Guillermo
Publicado: (2012) -
Improved Poincaré inequalities and solutions of the divergence in weighted norms
por: Acosta, G., et al. -
Improved Poincaré inequalities and solutions of the divergence in weighted norms
por: Acosta Rodriguez, Gabriel, et al.
Publicado: (2017) -
Improved Poincaré inequalities and solutions of the divergence in weighted norms
por: Acosta, Gabriel, et al.
Publicado: (2017)