Bayesian networks optimization based on induction learning techniques
Obtaining a bayesian network from data is a learning process that is divided in two steps: structural learning and parametric learning. In this paper, we define an automatic learning method that optimizes the bayesian networks applied to classification, using a hybrid method of learning that combine...
Guardado en:
| Autores principales: | Britos, Paola Verónica, Felgaer, Pablo, García Martínez, Ramón |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2008
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/83464 |
| Aporte de: |
Ejemplares similares
-
Prediction in health domain using Bayesian networks optimization based on induction learning techniques
por: Felgaer, Pablo, et al.
Publicado: (2019) -
A Hierarchical Two-tier Approach to Hyper-parameter Optimization in Reinforcement Learning
por: Barsce, Juan Cruz, et al.
Publicado: (2019) -
A Hierarchical Two-tier Approach to Hyper-parameter Optimization in Reinforcement Learning
por: Barsce, Juan Cruz, et al.
Publicado: (2020) -
Bayesian estimation of turbulent motion
por: Heás, P., et al. -
Bayesian estimation of turbulent motion
por: Mininni, Pablo Daniel
Publicado: (2013)