Outflowing disk formation in B supergiants due to rotation and bi-stability in radiation driven winds

The effects of rapid rotation and bi-stability upon the density contrast between the equatorial and polar directions of a B[e] supergiant are re-investigated. Based on a new slow solution for different high rotational radiation-driven winds and the fact that bi-stability allows a change in the line-...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Curé, M., Rial, D. F., Cidale, Lydia Sonia
Formato: Articulo
Lenguaje:Inglés
Publicado: 2005
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/83382
Aporte de:
Descripción
Sumario:The effects of rapid rotation and bi-stability upon the density contrast between the equatorial and polar directions of a B[e] supergiant are re-investigated. Based on a new slow solution for different high rotational radiation-driven winds and the fact that bi-stability allows a change in the line-force parameters (α, k, and δ), the equatorial densities are about 102-104 times higher than the polar ones. These values are in qualitative agreement with the observations.