Weighted projections and Riesz frames
Let H be a (separable) Hilbert space and {ek}k≥1 a fixed orthonormal basis of H. Motivated by many papers on scaled projections, angles of subspaces and oblique projections, we define and study the notion of compatibility between a subspace and the abelian algebra of diagonal operators in the given...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2005
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/83290 |
| Aporte de: |
| Sumario: | Let H be a (separable) Hilbert space and {ek}k≥1 a fixed orthonormal basis of H. Motivated by many papers on scaled projections, angles of subspaces and oblique projections, we define and study the notion of compatibility between a subspace and the abelian algebra of diagonal operators in the given basis. This is used to refine previous work on scaled projections, and to obtain a new characterization of Riesz frames. |
|---|