Cocomplete toposes whose exact completions are toposes
Let ε be a cocomplete topos. We show that if the exact completion of ε is a topos then every indecomposable object in ε is an atom. As a corollary we characterize the locally connected Grothendieck toposes whose exact completions are toposes. This result strengthens both the Lawvere-Schanuel charact...
Guardado en:
| Autor principal: | Menni, Matías |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2007
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/83213 |
| Aporte de: |
Ejemplares similares
-
A Tannakian context for Galois theory
por: Dubuc, E.J., et al. -
A Tannakian context for Galois theory
Publicado: (2013) -
Sheaves in geometry and logic : a first introduction to topos theory /
por: Mac Lane, Saunders, 1909-2005
Publicado: (1992) -
Continuous cohesion over sets
por: Menni, Matías
Publicado: (2014) -
Every Rig with a One-Variable Fixed Point Presentation is the Burnside Rig of a Prextensive Category
por: Menni, Matías
Publicado: (2017)