Projections in operator ranges
If H is a Hilbert space, A is a positive bounded linear operator on H and S is a closed subspace of H, the relative position between S and A-1 (S⊥) establishes a notion of compatibility. We show that the compatibility of (A, S) is equivalent to the existence of a convenient orthogonal projection in...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2006
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/83108 |
| Aporte de: |
| Sumario: | If H is a Hilbert space, A is a positive bounded linear operator on H and S is a closed subspace of H, the relative position between S and A-1 (S⊥) establishes a notion of compatibility. We show that the compatibility of (A, S) is equivalent to the existence of a convenient orthogonal projection in the operator range R(A1/2) with its canonical Hilbertian structure. |
|---|