Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

A search for weakly interacting massive darkmatter particles produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and missing transverse momentum are considered. The analysis uses 36.1 fb-1 of proton–proton collision data recorded by the ATL...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alconada Verzini, María Josefina, Alonso, Francisco, Arduh, Francisco Anuar, Dova, María Teresa, Hoya, Joaquín, Monticelli, Fernando Gabriel, Wahlberg, Hernán Pablo, The ATLAS Collaboration
Formato: Articulo
Lenguaje:Inglés
Publicado: 2018
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/82829
Aporte de:
Descripción
Sumario:A search for weakly interacting massive darkmatter particles produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and missing transverse momentum are considered. The analysis uses 36.1 fb-1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are interpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour-neutral spin-0 mediators produced in association with top quarks and decaying into a pair of darkmatter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross-section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour-charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements.