Early stages of platinum electrodeposition on highly oriented pyrolytic graphite: scanning tunneling microscopy imaging and reaction pathway

The early stages of Pt electrodeposition (0.675-0.620 V vs RHE) on highly oriented pyrolytic graphite (HOPG) from chloroplatinic acid at 25 °C have been studied by ex-situ STM and SEM imaging complemented with electrochemical data. Nucleation and 3D growth of Pt initiate at HOPG surface defects. Lar...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zubimendi, J. L., Vázquez, L., Ocon, P., Vara, J. M., Triaca, Walter Enrique, Salvarezza, Roberto Carlos, Arvia, Alejandro Jorge
Formato: Articulo
Lenguaje:Inglés
Publicado: 1993
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/80551
Aporte de:
Descripción
Sumario:The early stages of Pt electrodeposition (0.675-0.620 V vs RHE) on highly oriented pyrolytic graphite (HOPG) from chloroplatinic acid at 25 °C have been studied by ex-situ STM and SEM imaging complemented with electrochemical data. Nucleation and 3D growth of Pt initiate at HOPG surface defects. Large Pt agglomerates containing flat crystallites with well-defined geometries are found around HOPG steps. Pt crystallites formed by 1-2 nm size clusters become more compact as the electrodeposition potential is shifted negatively or the Pt electrodeposited charge is increased. High-resolution STM imaging reveals large uncovered HOPG areas with the nearest-neighbor C-C distance d = 0.24 ± 0.02 nm and fiat hexagonal Pt crystallites. Electrochemical data combined with STM imaging can be interpreted in terms of a diffusion-controlled Pt(IV) to Pt(II) reaction at HOPG and a surface reaction leading to Pt(0) at HOPG defects.