An analysis of local and global solutions to address Big Data imbalanced classification: a case study with SMOTE preprocessing
Addressing the huge amount of data continuously generated is an important challenge in the Machine Learning field. The need to adapt the traditional techniques or create new ones is evident. To do so, distributed technologies have to be used to deal with the significant scalability constraints due t...
Guardado en:
| Autores principales: | Basgall, María José, Hasperué, Waldo, Naiouf, Marcelo, Fernández, Alberto, Herrera, Francisco |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2019
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/80384 |
| Aporte de: |
Ejemplares similares
-
SMOTE-BD: An Exact and Scalable Oversampling Method for Imbalanced Classification in Big Data
por: Basgall, María José, et al.
Publicado: (2018) -
SMOTE-BD: An Exact and Scalable Oversampling Method for Imbalanced Classification in Big Data
por: Basgall, María José, et al.
Publicado: (2018) -
FDR²-BD: A Fast Data Reduction Recommendation Tool for Tabular Big Data Classification Problems
por: Basgall, María, et al.
Publicado: (2021) -
Analysis and design of scalable pre-processing techniques of instances for imbalanced Big Data problems : Applications in humanitarian emergencies situations
por: Basgall, María José
Publicado: (2022) -
Coupling REPMAC with FDA to solve highly imbalanced classification problems
por: Ahumada, Hernán César, et al.
Publicado: (2008)