Aplicación de una arquitectura de red neuronal para el monitoreo de carga por métodos no invasivos (NILM) utilizando ciclos de activación de artefactos eléctricos en el entrenamiento

Con el objetivo de lograr identificar artefactos eléctricos utilizando redes neuronales a partir de una medida total de consumo de energía (técnica conocida como NILM, del inglés Non-Intrusive Load Monitoring), en el presente trabajo se plantea la evaluación de dos tipos de redes neuronales capaces...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cocconi, Diego, Yuan, Rebeca, Mulassano, Micaela, Ferreyra, Diego
Formato: Objeto de conferencia
Lenguaje:Español
Publicado: 2019
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/76969
Aporte de:
Descripción
Sumario:Con el objetivo de lograr identificar artefactos eléctricos utilizando redes neuronales a partir de una medida total de consumo de energía (técnica conocida como NILM, del inglés Non-Intrusive Load Monitoring), en el presente trabajo se plantea la evaluación de dos tipos de redes neuronales capaces de realizar tal tarea, contando como ejemplos de entrenamiento válidos para el aprendizaje con ciclos de activación de diferentes artefactos que ya fueron identificados por un algoritmo de detención desarrollado en trabajos anteriores.